
D I G @ 8 . 8 . 8 . 8 G R O K D N S . CO M D S + D N S S E C 	

DNS Deep Dive

1 - Introduction

✓

About the Instructor

⊜ Nathan Isburgh	

⊜  Email is nathan dot isburgh at the domain edgecloud.com ☺	

⊜ Unix user/enthusiast 20+ years, teaching it 15+ years	

⊜ Pretty much a big nerd :)	

1 - Introduction 2

✓

About the Course

⊜ 1 day, lectures & labs	

⊜  Lunch hour to be announced	

⊜ Breaks about every hour	

⊜  Politely wave at me if I’ve gone on too long	

⊜ Telephone policy	

⊜  Take it outside, please.	

⊜ Restrooms/Drinks/Food	

⊜  Facility policy	

1 - Introduction 3

✓

About the Students

⊜ Name?	

⊜ Time served, I mean employed, in the IT field?	

⊜  Speaking of time served… Where was your last vacation?	

⊜ Department?	

⊜ General Linux skill level?	

⊜ Existing DNS knowledge level?	

⊜ What are you hoping to take away from this class?	

1 - Introduction 4

✓

Expectations of Students

⊜ Ask Questions!	

⊜ Complete the labs	

⊜ Have fun	

⊜ Learn something	

1 - Introduction 5

DNS Purpose, History and Design

2 - DNS Purpose, History and Design

✓

The Basic Idea

⊜ DNS - Domain Name System - A system of servers and
clients which, among many other functions, map host
names to IP addresses and vice versa	

⊜ IP Address - Identification information for nodes on a
network	

⊜ Host name - human-friendly name for identification of

nodes on a network	

⊜ Example:	

	

grokdns.com " 107.170.20.37	

2 - DNS Purpose, History and Design 7

✓

Asking the DNS questions

2 - DNS Purpose, History and Design

⊜ How does a client ask the DNS for information?	

⊜ Queries!	

⊜ A client puts together a query to send to a name server.

This query formats the request in a consistent manner so
the DNS server can process and answer with a response.	

⊜ What’s in a query? A simple query might be requesting

the IP address associated with a domain name, as in the
previous example. Another example might ask for the
mail exchangers of a domain, to deliver an email message.	

8

✓

A Brief History…

2 - DNS Purpose, History and Design

⊜  In the late 60’s, ARPAnet was formed by [D]ARPA. This
infantile network interconnected a few dozen computer sites
around the country, and naming was not a problem because
the network was mostly static.	

⊜ Then in the 70’s, ARPAnet grew to a few hundred hosts, and

naming had to be centralized. The Stanford Research Institute
(SRI) hosted a file called HOSTS.TXT, which was a flat text
database of all machines connected on the ARPAnet.	

⊜ Using FTP, administrators periodically downloaded the

HOSTS.TXT file to update their local host to address
mappings. Can you imagine?	

9

✓

History Continued

2 - DNS Purpose, History and Design

⊜ Changes to hostnames and addresses were emailed to the
SRI Network Information Center (SRI-NIC).	

⊜ This setup was tolerable while ARPAnet was still a small,

friendly community of nerds.	

⊜ Then TCP/IP came along in the early 80’s, and the
ARPAnet population exploded.	

⊜ All of a sudden, HOSTS.TXT, being maintained and hosted
by one group at SRI-NIC was untenable.	

⊜  More changes, more frequently	

⊜  Security, name space collisions, etc	

10

✓

DNS to the rescue!

2 - DNS Purpose, History and Design

⊜ Paul Mockapetris was charged with designing a
replacement for the rapidly failing HOSTS.TXT hack.	

⊜ In 1984, Paul released two Requests For Comments

(RFC) detailing the design of the Domain Name System.	

⊜ This core design still underpins the DNS driving today’s
internet!	

⊜ DNS has since been updated by RFC’s 1034 and 1035, as
well as many other RFC’s covering security and other
enhanced features of DNS.	

11

✓

DNS Design Fundamentals

2 - DNS Purpose, History and Design

⊜ DNS has a very strong hierarchal structure to it, similar to
a filesystem – both are described as an inverted tree.	

⊜ At the top is the trunk of the tree, known as the root

node, written as a single dot; literally ‘.’	

⊜ Directly beneath the root node are the Top Level
Domains (TLDs). The TLDs provide the top-most level
of organization of the name space. Think of them as
groups or buckets which all domain names fall in to.
Some of the TLDs:	

⊜  com, net, org, edu, biz, us, uk, it, jp, info, travel, museum	

12

✓

The Hierarchical Picture

2 - DNS Purpose, History and Design 13

The root node:

^ Some of the TLD’s

⊜ Now imagine the traditional Unix filesystem.. Put / in
for the root node, and usr, bin, etc, var, lib, mnt for
the TLDs.
⊜ See the similarity?

✓

Second Level Domains

2 - DNS Purpose, History and Design

⊜ After the TLD comes the second level domain, only
noteworthy in the hierarchy because this is generally
what is “owned” when someone registers a domain
name: the combination of the second level domain with
the top level domain. Examples:	

⊜  grokdns.com	

⊜  ietf.org	

⊜  github.com	

14

✓

The Hierarchical Picture

2 - DNS Purpose, History and Design 15

The root node:

TLD’s:

SLD’s:

✓

Inverted Tree Structures

2 - DNS Purpose, History and Design

⊜ Due to the underlying shared structure, the similarities
between the DNS and a filesystem are numerous:	

⊜  Siblings with the same parent path can not have the same name	

⊜  Only one ‘grokdns’ under com	

⊜  Can have a ‘grokdns’ under net, but it would be completely separate	

⊜  This solves the name collision problem!	

⊜  The trunk is called root	

⊜  Trees are recursive structures, meaning each node in the tree is a
tree itself, forming a subtree within the overall tree. This is known
as a directory in filesystems, and a domain in DNS.	

⊜  Allows for natural separation points within the namespace:	

⊜  .com for all commercial entities, grokdns.com for the specific ‘grokdns’

commercial entity, …	

16

✓

Why was it done this way?

2 - DNS Purpose, History and Design

⊜ An inverted tree structure:	

⊜  Prevents name collisions! Every node is guaranteed unique!	

⊜  Shares the database naturally across domain owners	

⊜  Easily paves the way for delegation	

⊜  The concepts of sub trees allows for simple demarcation of ownership.	

⊜  This is precisely what happens when a domain name is registered: the
authority for that name is delegated to the owner, and to join the DNS,
the owner will have to operate a name server, contributing their branch
to the global tree!	

⊜ This is an absolutely critical aspect for the design of DNS!
No longer is there one centralized authority for all
naming needs (like the old SRI-NIC model).	

17

✓

Naming

2 - DNS Purpose, History and Design

⊜ Just like a pathname identifies a location in the filesystem,
a domain name identifies a location within the DNS
database.	

⊜  In a filesystem, the pathname is specified starting from the root

node, separating each directory with a ‘/’, as: /usr/local/bin!
⊜  In DNS, the domain is specified in reverse, from the lowest level,

back to the root, separating each domain with a ‘.’, as:
www.grokdns.com.!

⊜ The final ‘.’ on a domain name is generally not required,
and if it is not present, is assumed to be the root node.	

⊜  Only DNS administrators worry about the trailing dot in

configuration files	

18

Delegation

3 - Delegation

✓

More on Delegation

3 - Delegation

⊜ DNS administrators can delegate authority for a particular
domain to a separate entity.	

⊜ For example, the grokdns domain was delegated by the

com domain to EdgeCloud. Now EdgeCloud manages
the entire namespace at and below grokdns.com.	

⊜ This is great for everyone - the com DNS admins no

longer have to handle change requests for grokdns.com.
Further, since the domain was delegated, they don’t have
to hold the domain database for that branch of the tree.
Requests will be passed along to the nameservers
EdgeCloud maintains for grokdns.com!	

20

✓

Delegation Everywhere

3 - Delegation

⊜ Delegation can (and does) occur anywhere in the tree:	

⊜  . delegates com	

⊜  com delegates grokdns	

⊜ grokdns has total control over its branch of the tree, so it
can create:	

⊜  www.grokdns.com	

⊜  mail.grokdns.com	

⊜  lab09.examples.grokdns.com	

⊜  …	

⊜ Notice how the namespace can be used for organization	

21

✓

More Delegation!

3 - Delegation

⊜ Organization is great. Delegation is better.	

⊜  If examples.grokdns.com starts getting too big for the grokdns.com

nameservers (or administrators) to handle themselves, it could be
delegated!	

⊜  Then the examples.grokdns.com domain would be completely independent,
and could be managed separately from grokdns.com.	

⊜  In other words, the authoritative information for
examples.grokdns.com would be found on the
examples.grokdns.com nameservers, not the grokdns.com
nameservers.	

⊜ The grokdns.com nameservers would only store the

nameserver records for examples.grokdns.com	

⊜  All queries for examples.grokdns.com to grokdns.com nameservers would

get a referral to the examples.grokdns.com nameservers	

22

✓

Authority

3 - Delegation

⊜ Authority decides who is responsible for a given domain	

⊜ When a domain is registered, the registrant provides their

nameserver hostnames so the registrar can send them to
the TLD for delegation purposes	

⊜  When the TLD nameserver receives a request for the subdomain, it

will respond with a referral, which includes the nameserver records
of the domain, which indicate the DNS servers that are authoritative
for the subdomain	

⊜  When the nameservers are within the subdomain (such as
ns1.grokdns.com), the parent nameserver will also provide the
addresses of the nameservers	

⊜  These special case records are known as glue records	

23

✓

Root Nameservers

3 - Delegation

⊜ The root nameservers are the starting point for the
domain name system	

⊜ The root nameservers know where all of the TLD

nameservers are located	

⊜ As you can imagine, the root nameservers are the most
important members of the domain name system	

⊜ There are currently “13” root nameservers, spread around
the globe, on varying networks and operating in multiple
geographic locations through anycast routing	

⊜  www.root-servers.org	

24

DNS Queries in Detail

4 - DNS Queries in Detail

✓

Anatomy of a DNS query

4 - DNS Queries in Detail

⊜ What really happens when a user types
www.grokdns.com in their web browser and presses
enter?	

⊜  Browser asks OS for name resolution of www.grokdns.com	

⊜  OS resolver consults configuration, possibly returning answer from

hosts file, otherwise, assembling DNS query for ISP DNS server	

⊜  The OS will send a recursive query, which is how a DNS client asks a

DNS server to perform all of the work necessary to get a final answer	

⊜  The ISP DNS server will consult it’s cache to speed up responses,
but for a complete understanding, we will assume the cache is empty
at this time	

26

✓

Anatomy of a DNS query

4 - DNS Queries in Detail

⊜  The ISP DNS server is preconfigured with the addresses of the root
nameservers, which are authoritative for ‘.’	

⊜  Using this information, the ISP DNS server will send a non-recursive
query to one of the root nameservers, asking it for the address of
www.grokdns.com	

⊜  The root nameserver is [of course] not authoritative for
www.grokdns.com, so it responds with a referral, which does not
contain an answer, but does contain authoritative resources to
consult next, which in this example would be the nameserver
records for com	

⊜  This gets the ISP DNS server one step closer to getting an answer, which

is the basic name resolution process of DNS	

⊜  Once more, the ISP DNS server will send a non-recursive query to
one of the com nameservers asking for the address of
www.grokdns.com	

27

✓

Anatomy of a DNS query

4 - DNS Queries in Detail

⊜  Once again, the com nameserver is not authoritative for
www.grokdns.com, so it responds with a referral, providing the
nameserver records for grokdns.com	

⊜  Which were provided to the com nameservers by the registrar when the

grokdns.com domain was registered	

⊜  Now the ISP DNS server has the name server records for com and
grokdns.com, both of which will be cached for future queries	

⊜  The ISP DNS server will send another non-recursive query, asking
the grokdns.com nameservers for the address of www.grokdns.com	

⊜  Presuming the www subdomain of grokdns.com is not delegated, this
is the end of the referral line:	

⊜  The grokdns.com nameservers will have an answer for the address of

www.grokdns.com, which the ISP DNS server will cache and provide to
the client, eventually yielding an IP address for the user’s web browser to
initiate a connection	

28

✓

Query Types

4 - DNS Queries in Detail

⊜ A recursive query asks a nameserver for the final answer to a
question, and relies on the name server to perform the
necessary additional queries to provide that information	

⊜ A non-recursive or iterative query simply asks a nameserver

to provide the best information it has on the query, normally
resulting in referral responses	

⊜ Recall in the example earlier, the initial query from the OS

name resolver (sometimes referred to as a stub resolver or
caching resolver) to the ISP nameserver was recursive. All
other requests were iterative. This is the standard method of
operation for the DNS.	

⊜  In fact, nameservers are configured to allow or disallow recursive queries

depending on the nameserver’s purpose	

29

✓

Caching

4 - DNS Queries in Detail

⊜ Without caching, DNS would be terribly slow, inefficient,
and put a ridiculous strain on the root nameservers	

⊜ Fortunately, that problem was considered all the way back

at the design phase, and so caching is used everywhere	

⊜  Watch out, though, it’s a double-edged sword!	

⊜  Propagation delays and cache poisoning are serious concerns	

⊜ Caching is the technique of storing a local copy of some
piece of information in order to have faster access to it	

⊜ There are many ways to keep the cache copy “up to date”

with the real copy, and in DNS that is achieved by the
Time To Live (TTL)	

30

✓

Caching and TTL

4 - DNS Queries in Detail

⊜ When a nameserver receives a response to a query, it caches
that response in order to improve performance on future
queries that might need that same information	

⊜ Consider, in the previous example, if someone had earlier

requested yahoo.com. Then when a request for
www.grokdns.com is made, the nameserver would have
already cached the nameserver information for the com
domain, and would not need to query the root nameservers	

⊜ The TTL controls how long cached information is held,

anywhere from one second to years	

⊜  The TTL is specified by the authoritative server	

31

✓

Balancing the TTL

4 - DNS Queries in Detail

⊜ As with everything, setting the TTL is a balancing decision	

⊜ A shorter TTL provides for a more rapid propagation of

DNS changes, because non-authoritative servers have to
expire their cache more often and refresh from the
authoritative servers	

⊜  But, it also increases load on the authoritative nameservers due to

the increased traffic to refresh caches	

⊜ A longer TTL is the inverse - lower load on the
authoritative nameservers, but longer propagation times	

32

Reverse Lookups

5 - Reverse Lookups

✓

Reverse Lookups

5 - Reverse Lookups

⊜ Given an IP address, how to find the domain name?	

⊜  Search the entire database one name at a time?	

⊜  Absolutely not! Not feasible, and not even possible!	

⊜ in-addr.arpa	

⊜  This is a special domain used to provide IPv4 reverse mapping	

⊜ ip6.arpa	

⊜  This special domain provides IPv6 reverse mapping	

34

✓

in-addr.arpa

5 - Reverse Lookups

⊜ Each octet in the dotted quad of an IPv4 address is at a
level in the domain tree for in-addr.arpa, descending from
root:	

⊜  grokdns.com has an address of 107.170.20.37	

⊜  37.20.170.107.in-addr.arpa " grokdns.com	

35

✓

ip6.arpa

5 - Reverse Lookups

⊜ Each nibble of the IPv6 address is at a level in the domain
tree for ip6.arpa, descending from root:	

⊜  grokdns.com has an address of 2604:a880:0:1010::1050:9001	

⊜  1.0.0.9.0.5.0.1.0.0.0.0.0.0.0.0.0.1.0.1.0.0.0.0.0.8.8.a.4.0.6.2.ip6.arpa "
grokdns.com	

⊜ Ahhhh, IPv6 addresses…	

36

✓

Why are the Addresses Backwards?

5 - Reverse Lookups

⊜ Notice that the *.arpa names end up reversing the
components of the address:	

⊜  107.170.20.37 " 37.20.170.107.in-addr.arpa.	

⊜  This is a side effect of how DNS names are written	

⊜  Leaf to root, or most specific to least specific	

⊜  www.grokdns.com goes from www to grokdns to com to root	

⊜  IP addresses are the opposite	

⊜  Least specific to most specific, network address to host address	

⊜  192.168.1.100/24	

⊜  Network address: 192.168.1	

⊜  Host address: 100	

⊜ DNS is flexible, so the arpa names could have been reversed,
allowing the address and name to line up	

⊜  But what about the way IP addresses are allocated?	

37

✓

Backwards arpa Names

5 - Reverse Lookups

⊜ Recall that IP address space is allocated by network block	

⊜ To support delegation, the network address needs to exist

“higher” in the DNS hierarchy, i.e. closer to root	

⊜ This allows the corresponding arpa domain to be

delegated	

⊜ Consider a simplified example:	

⊜  Level 3 Communications is allocated the 4.0.0.0/8 network	

⊜  Any address under 4.x.x.x belongs to Level 3, so to create reverse

lookup names, 4.in-addr.arpa is delegated to Level 3 by in-addr.arpa	

⊜  Likewise, if Level 3 leases some address space to a customer, say

4.100.100.0/24, then Level 3 will delegate 100.100.4.in-addr.arpa to
the customer’s nameservers	

38

DNS Tools

6 - DNS Tools

✓

Overview

6 - DNS Tools

⊜ There are many tools available to query and troubleshoot
the DNS	

⊜  Tools to generate queries such as dig and nslookup	

⊜  Tools to query registrar information	

⊜  Tools to test DNS correctness	

⊜  Tools to view and troubleshoot DNS extensions like DNSSEC	

40

✓

dig

6 - DNS Tools

⊜ The main workhorse for querying DNS servers is dig	

⊜  dig [@server] [name] [type] [class] [queryopt...]	

⊜ Examples	

⊜  dig grokdns.com	

⊜  dig @8.8.8.8 grokdns.com ds +dnssec +qr	

⊜  dig @ns1.grokdns.com grokdns.com soa	

⊜  dig grokdns.com +trace	

⊜ The output from dig is a bit ugly because it is designed to
be compatible with nameserver database files, known as
zone files	

⊜  With practice, reading the output will become second nature	

41

✓

nslookup

6 - DNS Tools

⊜ Another useful and regularly available tool is nslookup	

⊜  nslookup [name] [server]	

⊜ Examples	

⊜  nslookup grokdns.com	

⊜  nslookup grokdns.com 8.8.8.8	

⊜ When no arguments are given, nslookup enters a more
powerful interactive mode, allowing for custom queries
and more	

⊜ It is useful to know of nslookup and how to use it because

it is common to most operating systems	

⊜  dig is preferred over nslookup for speed and verbosity	

42

✓

Registrars

6 - DNS Tools

⊜ Registrars act as the go-between for TLD’s	

⊜ Registration information is presented through various

whois information databases	

⊜ The whois command can query these databases:	

⊜  whois grokdns.com	

⊜  whois 4.0.0.0	

⊜ Notice also that IP address assignments are presented
through the whois database, and can be queried directly
in most cases, otherwise using special servers	

⊜  whois.arin.net, whois.afrinic.net, whois.apnic.net, …	

43

✓

DNS Correctness Testers

6 - DNS Tools

⊜ There are many, many tools available online to perform
various tests on DNS infrastructure and configuration	

⊜  dnsviz.net	

⊜  dnsstuff.com	

⊜  mxtoolbox.com	

⊜  ultratools.com	

⊜  dnscheck.pingdom.com	

⊜  viewdns.info	

44

✓

DNSSEC Tools

6 - DNS Tools

⊜ There are several DNSSEC troubleshooting tools, of
which the most common are:	

⊜  dnsviz.net	

⊜  dnssec-debugger.verisignlabs.com	

45

✓

Lab

6 - DNS Tools

Lab/Break time: 20 minutes	

⊜ Explore the various tools discussed in lecture	

⊜ Use grokdns.com, or any domain	

⊜  dig grokdns.com	

⊜  whois grokdns.com	

⊜  Run grokdns.com through the testing tools	

46

Resource Records

7 - Resource Records

✓

What is Stored in DNS?

7 - Resource Records

⊜ Resource Records	

⊜  A resource record contains the DNS information about a domain	

⊜  There are many types of resource records, including address records

(A), mail exchangers (MX) and name servers (NS).	

⊜  Every domain has at least 2 resource records, an SOA and an NS	

⊜  But that wouldn’t be a very useful domain, so there are usually quite a

few more records, defining addresses, mail exchangers, canonical names
and more.	

⊜ The most common types, overviewed next, include:	

⊜  SOA, NS, A/AAAA, CNAME, PTR, MX	

⊜ DNSSEC has some additional resource record types:	

⊜  DNSKEY, DS, RRSIG	

48

✓

SOA

7 - Resource Records

⊜ Start of Authority: This resource record identifies authority
for a domain	

⊜  Required record at each delegation point to mark new authority	

⊜  Declares an authoritative nameserver along with additional details	

⊜  +multiline is useful with dig to get more verbose output and comments	

49

$	
 dig	
 @ns1.grokdns.com	
 grokdns.com	
 soa	
 +multiline	

	

grokdns.com. 	
 	
 60	
 IN	
 SOA	
 ns1.grokdns.com.	
 dnsadmin.grokdns.com.	
 (

	
 	
 	
 	
 2016101204	
 ;	
 serial	

	
 	
 	
 	
 600	
 	
 	
 	
 	
 	
 	
 	
 ;	
 refresh	
 (10	
 minutes)	

	
 	
 	
 	
 60	
 	
 	
 	
 	
 	
 	
 	
 	
 ;	
 retry	
 (1	
 minute)	

	
 	
 	
 	
 3600	
 	
 	
 	
 	
 	
 	
 ;	
 expire	
 (1	
 hour)	

	
 	
 	
 	
 60	
 	
 	
 	
 	
 	
 	
 	
 	
 ;	
 minimum	
 (1	
 minute)	

	
 	
 	
 	
)	

✓

NS

7 - Resource Records

⊜ Name Server: This resource record identifies authoritative
nameservers for a domain	

⊜  Each authoritative nameserver, including the one listed in the SOA, must

have an NS record	

⊜  Combined with the SOA, represents the bare minimum resource

records required to correctly define a domain with the DNS	

⊜  Returned in the authority section of response, and critical for

supporting delegation through referrals	

50

$	
 dig	
 @ns1.grokdns.com	
 grokdns.com	
 ns	

	

grokdns.com. 	
 	
 60	
 IN	
 NS	
 ns1.grokdns.com.	

grokdns.com. 	
 	
 60	
 IN	
 NS	
 ns2.grokdns.com.	

✓

A

7 - Resource Records

⊜ Address: This is the workhorse of resource records, as it
maps a hostname to an IPv4 address	

⊜  Most DNS tools (dig, nslookup, host) perform A record queries by

default	

51

$	
 dig	
 @ns1.grokdns.com	
 grokdns.com	
 a	

	

grokdns.com. 	
 	
 60	
 IN	
 A	
 107.170.20.37	

✓

AAAA

7 - Resource Records

⊜ IPv6 Address: This record maps a hostname to an IPv6
address	

⊜  Commonly referred to as a “quad a” record	

⊜  The four A’s in the name are in reference to the size difference
between IPv4 and IPv6 address	

⊜  (A) IPv4 has a 32 bit address	

⊜  (AAAA) IPv6 is 4 times larger, with 128 bit addresses	

52

$	
 dig	
 @ns1.grokdns.com	
 grokdns.com	
 aaaa	

	

grokdns.com. 	
 	
 60	
 IN	
 AAAA	
 2604:a880:0:1010::1050:9001	

✓

CNAME

7 - Resource Records

⊜ Canonical Name: This record maps an alias hostname to a
canonical hostname	

⊜  canonical (adj.) – accepted as being accurate and authoritative	

⊜  In other words, the canonical name is the “official” name for the host,
and the alias is a secondary name	

⊜  In DNS, the canonical name for a host is the name with an A record	

⊜  CNAME records exist to create additional names for the same host	

⊜  In the example below, www.grokdns.com is the alias, and grokdns.com

is the canonical name	

53

$	
 dig	
 @ns1.grokdns.com	
 www.grokdns.com	
 cname	

	

www.grokdns.com.	
 60	
 IN	
 CNAME	
 grokdns.com.	

✓

CNAME Records

7 - Resource Records

⊜ Why not just use multiple A records?	

⊜  First, ease of maintenance. If you need 10 names for one machine,

defining them with CNAME is easiest if you then need to change the
IP address of the machine. Only one change instead of 11.	

⊜  Second, canonicalization. Some services, notably email, will convert
all aliases into canonical names. This simplifies mail configuration.	

⊜ Note: when an A type query is performed on a CNAME
name, the nameserver will respond with both the
CNAME record and the associated A record	

54

$	
 dig	
 @ns1.grokdns.com	
 www.grokdns.com	
 a	

	

www.grokdns.com.	
 	
 60	
 IN	
 CNAME	
 grokdns.com.	

grokdns.com. 	
 	
 60	
 IN	
 A	
 107.170.20.37	

✓

PTR

7 - Resource Records

⊜ Pointer: This record maps a *.arpa hostname to the
canonical hostname	

⊜  If an organization has been allocated an appropriately sized network,

they can request to have the parent domain delegate the *.arpa name
for control and ease of management	

⊜  Otherwise, an organization has to rely on the owner of the containing
*.arpa namespace for PTR record management	

55

$	
 dig	
 –x	
 107.170.20.37	

	

37.20.170.107.in-­‐addr.arpa.	
 1800	
 IN	
 PTR 	
 grokdns.com.	

✓

PTR Record Best Practices

7 - Resource Records

⊜ Remember, there is only one PTR record for a given IP
address, and it should always point to the canonical
hostname for that host	

⊜ Also, as a side note, make sure your sending mail servers
map both directions exactly. This is important for proper
authentication and trust between mail systems:	

⊜ If grokdns.com handles outbound email, then:	

⊜  grokdns.com should have an A for 107.170.20.37 and	

⊜  37.20.170.107.in-addr.arpa. should have a PTR for grokdns.com	

56

✓

MX

7 - Resource Records

⊜ Mail Exchanger: This record declares the hostname for the
receiving mail server of the domain	

⊜  This resource record value contains two parts	

⊜  The first is a number known as the preference, which prioritizes mailservers	

⊜  The second value is the hostname of the mailserver which accepts email
from the internet for the given domain	

57

$	
 dig	
 @ns1.grokdns.com	
 grokdns.com	
 mx	

	

grokdns.com. 	
 	
 60	
 IN	
 MX	
 10	
 grokdns.com.	

✓

MX Record Preference Values

7 - Resource Records

⊜ MX records allow for enhanced mail routing functionality.	

⊜ When an email is shipped out, the server canonicalizes the

delivery address. So, for example,
bob@www.grokdns.com becomes bob@grokdns.com	

⊜ Then the server looks up the MX records for
grokdns.com, choosing the record with the lowest
preference and attempting delivery to the named
mailserver	

⊜  If delivery fails, the next lowest preference mailserver is attempted.	

⊜ This allows for backup email servers!	

58

✓

MX Record Preference Values

7 - Resource Records

⊜ But, how does the backup server handle forwarding on
the message to the primary?	

⊜ Preference values to the rescue again!	

⊜ The backup server will compare it’s own MX preference

value with the list, and discard all records numerically
equal to or greater than it’s own level, thereby eliminating
the chance for mail delivery loops (assuming everything
is set up correctly)	

⊜ Quite an elegant design, when used	

59

✓

Lab

7 - Resource Records

Lab/Break time: 20 minutes	

⊜ Use dig to explore the various resource records discussed
in lecture	

⊜ Check A, AAAA, CNAME, SOA, MX and NS records on

grokdns.com, ietf.org and/or isc.org	

60

Slaving

8 - Slaving

✓

Slaving Purpose

8 - Slaving

⊜ DNS Slave servers are a critical component to the healthy
functioning of the DNS	

⊜ Slave servers exist to help shoulder the load of requests,

and also provide backup resolution services if other
nameservers go down	

⊜ Slave servers are still authoritative for zones	

⊜  The term slave just means that they pull their data from a master

server via a zone transfer rather than a local file	

62

✓

How Slaving Works

8 - Slaving

⊜ The fields in the SOA define slaving configuration	

⊜  The serial number is incremented with each zone change	

⊜  The refresh interval specifies how often a slave checks in with the

master for new serial numbers	

⊜  The retry interval specifies how often to start checking if a slave

can’t connect to the master on one of the refresh checks	

⊜  The expire interval says how long a slave will continue serving a

zone’s data after losing contact with the master	

63

grokdns.com. 	
 	
 60	
 IN	
 SOA	
 ns1.grokdns.com.	
 dnsadmin.grokdns.com.	
 (

	
 	
 	
 	
 2016101204	
 ;	
 serial	

	
 	
 	
 	
 600	
 	
 	
 	
 	
 	
 	
 	
 ;	
 refresh	
 (10	
 minutes)	

	
 	
 	
 	
 60	
 	
 	
 	
 	
 	
 	
 	
 	
 ;	
 retry	
 (1	
 minute)	

	
 	
 	
 	
 3600	
 	
 	
 	
 	
 	
 	
 ;	
 expire	
 (1	
 hour)	

	
 	
 	
 	
 60	
 	
 	
 	
 	
 	
 	
 	
 	
 ;	
 minimum	
 (1	
 minute)	

	
 	
 	
 	
)	

✓

The Last SOA Field

8 - Slaving

⊜ The last field in the SOA is alternately marked minimum
or negative TTL depending on the tool	

⊜  Originally, this field was the minimum TTL used for any resource

record which did not have a TTL set explicitly (rfc 1035)	

⊜  Now the default TTL is set elsewhere, and this field has been

repurposed to the negative TTL for the zone	

⊜  Any query for a non-existent name within the zone should cache the lack

of an answer for the negative TTL specified (rfc 2308)	

64

DNSSEC

9 - DNSSEC

✓

Overview

9 - DNSSEC

⊜ DNSSEC – DNS SECurity extensions	

⊜  A PKI cryptosystem designed to authenticate and maintain integrity of DNS

data with a series of keys and signatures, all stored directly in the DNS	

⊜ Why?	

⊜  Prevent DNS cache poisoning	

⊜  Prevent tampering with valid response data	

⊜ Why not? (none of these are valid reasons today!)	

⊜  “It’s hard”	

⊜  Protocol rewrites in the beginning	

⊜  Higher server load due to cryptographic functions	

⊜  Higher traffic volume due to additional records	

⊜  Higher storage volume due to additional records making for larger zones	

66

✓

DNS Cache Poisoning

9 - DNSSEC

⊜ DNS Cache Poisoning is a relatively simple attack that
preys on the DNS protocol’s lack of authentication	

⊜  A DNS server will simply believe a DNS response that it receives	

⊜ An attacker tricks a DNS server into caching a malicious
response through a number of tricks, such as:	

⊜  Flooding the server with queries and spoofed responses	

⊜  Waiting for the server to send a query and then sending a spoofed
response before the real server can send it’s response	

⊜ Once a malicious record is cached in DNS, an
unsuspecting user won’t realize they are talking to the
wrong server on the network!	

67

✓

DNSSEC to the Rescue

9 - DNSSEC

⊜ DNSSEC provides authenticity to DNS responses by
cryptographically signing the zone data, then publishing
the signatures and public keys right in DNS	

⊜ Key trust is maintained through a rigid hierarchy, each

parent zone authenticating the keys for delegated zones,
descending all the way from the root servers	

⊜  The root servers sign their own keys and establish the base of trust	

⊜  The root server’s key is distributed with the nameserver software,

and key changes are communicated via multiple mechanisms such as
email, special protocol (rfc 5011) or software updates	

⊜ This special root key is known as the Trust Anchor	

68

✓

DNSSEC

9 - DNSSEC

⊜ Consider grokdns.com	

⊜  Two public/private keypairs were generated on the grokdns.com

nameserver	

⊜  One is the Zone Signing Key (ZSK) for signing zone data	

⊜  The other is the Key Signing Key (KSK) for signing the ZSK	

⊜  Both public keys get published in DNS as records of type DNSKEY	

⊜  The private ZSK is used to sign the zone data for grokdns.com	

⊜  Each set of resource records sharing the same name, type and class are

known as a Resource Record Set (RRset)	

⊜  Signing is performed on each RRset	

⊜  This is done because a query can not request a partial response – the

server will always return all matching records based on the query name,
type and class	

⊜  Signatures are published as type RRSIG (Resource Record Signature)	

69

✓

DNSSEC Verification

9 - DNSSEC

⊜ The verification process involves:	

⊜  Verifying the RRSIG’s with the ZSK provided by a DNSKEY record	

⊜  Verifying the DNSKEY records themselves involves:	

⊜  The ZSK is verified by the KSK	

⊜  The KSK is verified by the parent zone using DS records	

⊜ A DS (Delegation Signer) record is found on the parent
zone, and stores a hash of the KSK for a child zone	

⊜  The DS record is signed by the parent zone’s ZSK	

⊜ Like before, the parent zone’s ZSK is verified by the
parent zone’s KSK, which itself is verified by the
grandparent zone’s DS records…	

⊜  The trust model repeats all the way to root and the trust anchor	

70

✓

DNSSEC Algorithms and Key Sizes

9 - DNSSEC

⊜ DNSSEC can leverage multiple asymetric algorithms, using key
sizes up to 4096 bits	

⊜  RSA, DSA, EC	

⊜ Recommended minimum key sizes are 2048 bits for a KSK and
1024 bits for a regularly rolled ZSK	

⊜  Rolling a key means creating a new one and re-populating all of the various

signatures and DNSSEC details throughout the DNS	

⊜ Signatures are provided through digest algorithms	

⊜  MD5	

⊜  SHA1	

⊜  SHA256	

⊜  SHA512	

⊜ The most common and well supported is RSA-SHA1	

71

✓

Proving Non-Existence

9 - DNSSEC

⊜ The RRSIG records prove authenticity of existing data, but
how do we prove the non-existence of a record?	

⊜ Two methods:	

⊜  NSEC Records – Next Secure – These records store a list of each

actual RRset with a given name, as well as the next name within the
domain which contains one or more actual RRsets	

⊜  Major drawback is the ability to “walk” all of the names in a zone by

following the NSEC records	

⊜  NSEC3 Records – Next Secure 3 – These records work exactly like
NSEC records, except they store the hash of the names, preventing
zone walking!	

72

✓

Common DNSSEC Queries

9 - DNSSEC

⊜ Looking up DS records:	

dig grokdns.com ds!
⊜  Presence of DS records indicates a zone is signed	

⊜ Looking up DNSKEY records:	

dig grokdns.com dnskey +multiline!
⊜  The +multiline formats the output more verbosely with comments describing the

key details	

⊜ Verifying DNSKEY records:	

dig grokdns.com dnskey | dnssec-dsfromkey -f - grokdns.com!

⊜  Compare computed DS records with DS records from parent zone	

⊜ Requesting RRSIG/NSEC* records with queries:	

dig grokdns.com +dnssec	

⊜  The +dnssec tells dig to set the DNSSEC OK bit in the query	

73

✓

DNSSEC Finale

9 - DNSSEC

⊜ Once all of the signatures have been verified end to end,
the data is deemed authentic and admitted to cache!	

⊜  No more cache poisoning!	

⊜  No more response tampering!	

74

DNS Troubleshooting

10 - DNS Troubleshooting

✓

Basics

10 - DNS Troubleshooting

⊜ The basics of DNS troubleshooting include:	

⊜  A strong knowledge of the DNS design and operation	

⊜  Strong competence with lookup tools like dig or nslookup	

⊜ Using these skills, most common problems can be
identified readily	

⊜  Improper delegation	

⊜  Missing glue records	

⊜  Propagation delays	

⊜  Invalid DNS data	

⊜  Slaving failures	

76

✓

Lab

10 - DNS Troubleshooting

⊜ A customer set up lab1.grokdns.com as an A record for
192.168.1.100, but is complaining that they continue
seeing the wrong website	

⊜ Verify the DNS information and determine if there is a
caching issue, an administration issue or other	

⊜  Make sure to identify final cause so you can recommend a fix	

77

✓

Lab

10 - DNS Troubleshooting

⊜ A customer is complaining that their site is not working	

⊜  The site is: do-not-grokdns.com	

⊜  The authoritative nameserver is ns1.grokdns.com, which appears to
be working correctly (verify this)	

⊜ Perform a root cause analysis to explain to the customer
why they can not get to their site	

78

✓

Lab

10 - DNS Troubleshooting

⊜ A customer is complaining that their newly migrated website is
not showing correctly	

⊜  The site is: edgecloud.com	

⊜  ns1.grokdns.com is happily hosting the domain, but the ip address their

browser goes to does not match the IP address ns1.grokdns.com is
showing!	

⊜ Perform a root cause analysis to explain to the customer why
they can not get to their site	

⊜ The customer had a second question, stating that before the

migration, email sent from their main server at edgecloud.com
would occasionally get rejected by some mailservers	

⊜  Please review DNS configuration to see if there might be a mistake	

79

